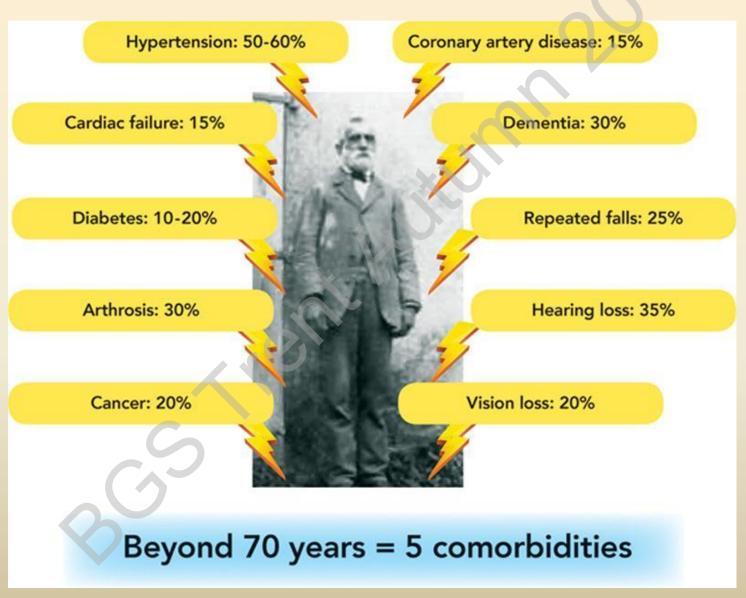
Cardiology conditions in the elderly population

Dr Ian Loke
Consultant Cardiologist
University Hospitals of Leicester

Disclosures

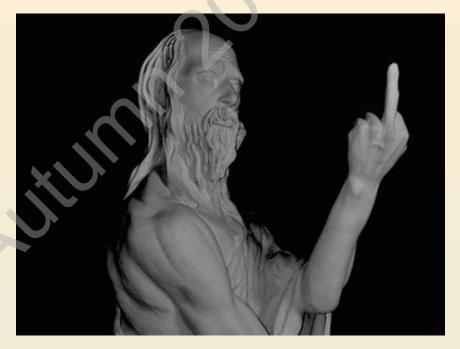
none



What is a cardiologist doing here?

Leicester: A story of 3 hospitals

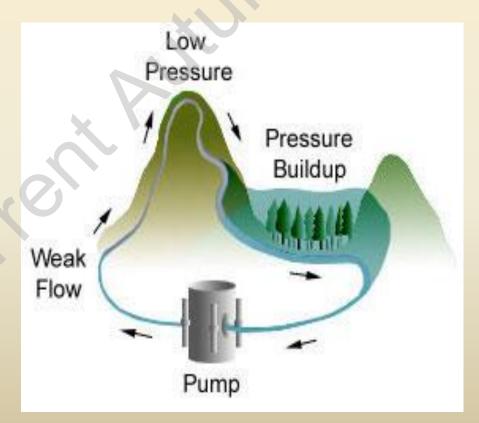
Why is this talk the most relevant?

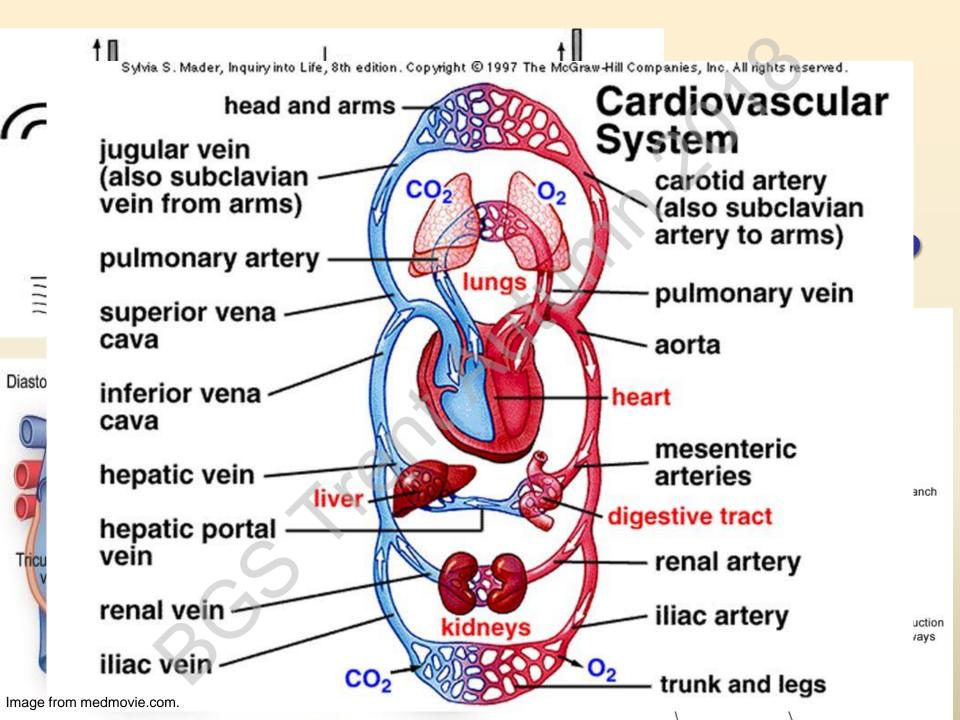

What are we trying to achieve for our patients?

- Live better
- Live longer
- Save money
- To make me feel better.....

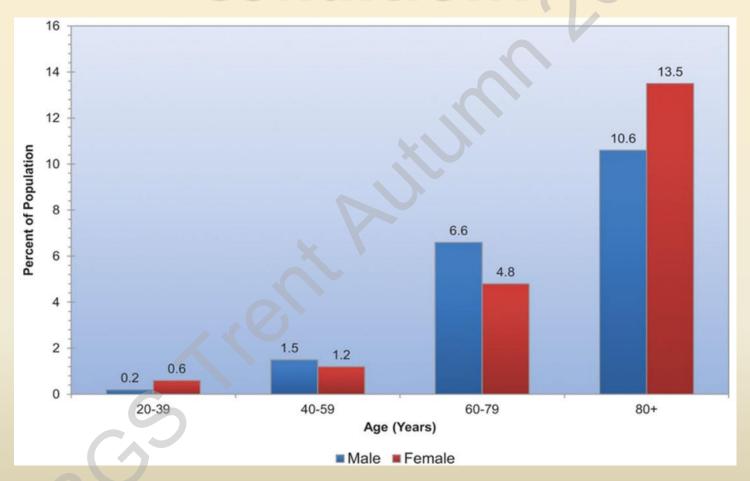
2 common conditions

- Heart failure
- Atrial fibrillation

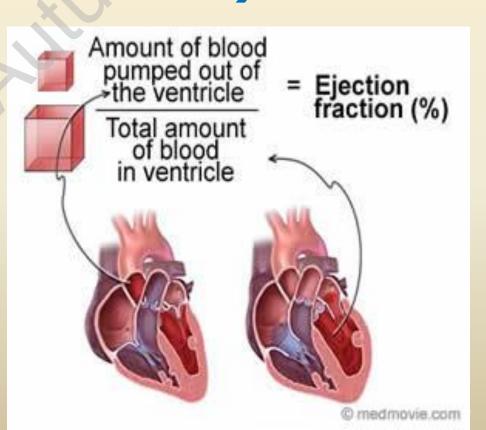


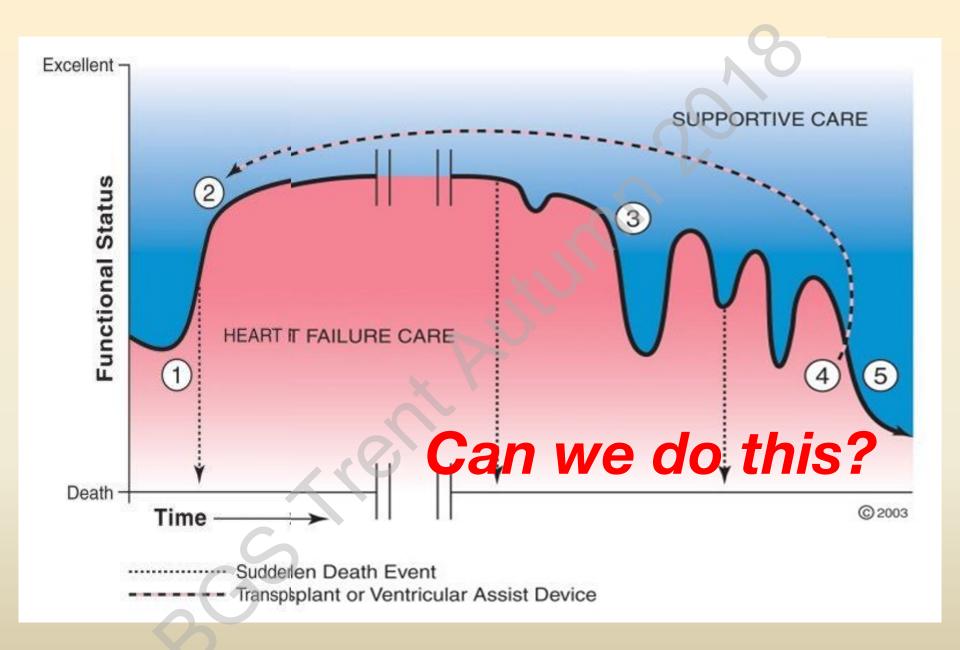

Aim: a cynic's review of evidence based treatment

CAUTION: NO PATHWAYS/FLOW CHARTS

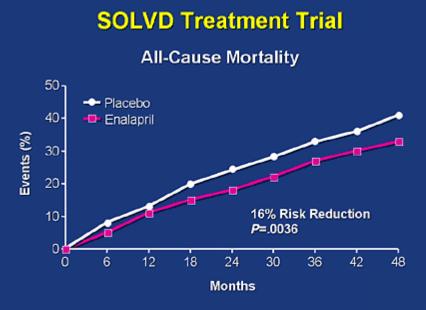

Heart failure is a complex clinical syndrome of symptoms and signs that suggest the efficiency of the heart as a pump is impaired

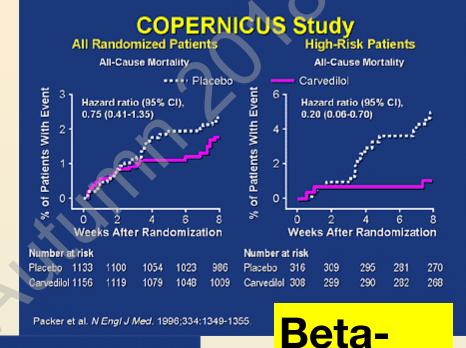
NICE Clinical Guidelines 2003


A classic "geriatric" condition?

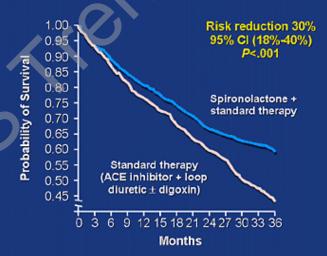


Prevalence of heart failure by sex and age (Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute)


HFREF (HF with reduced ejection fraction) vs HFPEF (HF with preserved ejection fraction)


What is the "EF" mean?
So what?

3 pillars of HF treatment for HFREF



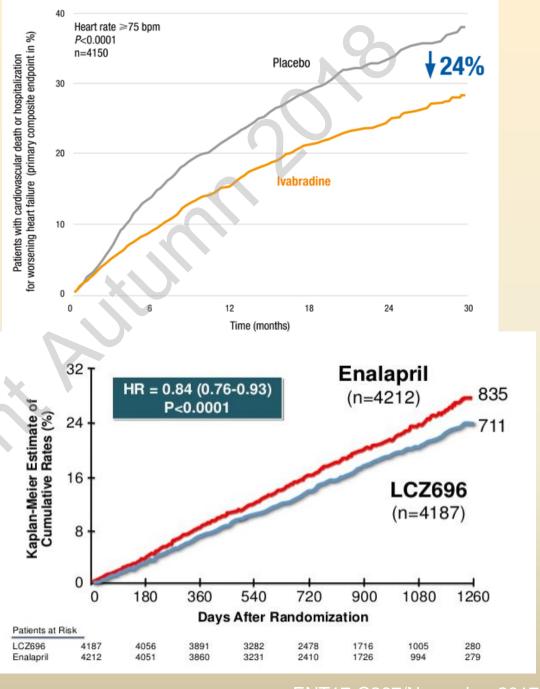
SOLVD Investigators, N Engl J Med. 1991;325;293-302.

ACE inhibitor

Pitt et al. N Engl J Med. 1999;341:709-717.

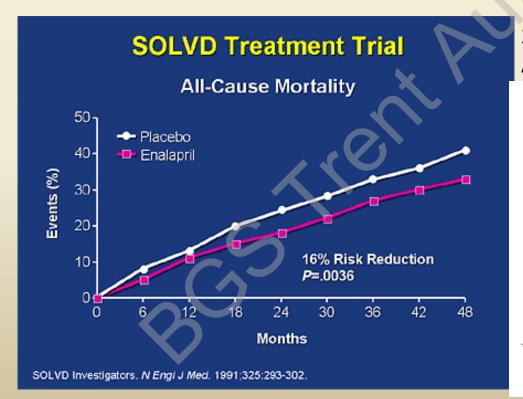
Aldosterone antagonist

ENT17-C267/November 2017


blocker

More recent drugs Ivabradine (Procolaran) (sinus node inhibitor)

Swedberg K et al. "Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study". *Lancet*. 2010. 376(10):875-885.


Sacubitril/ Valsartan (Entresto)

McMurray JJV, et al. "Angiotensin-neprilysin inhibition versus enalapril in heart failure". *The New England Journal of Medicine*. 2014. 371(11):993-1004.

Know your evidence!

- Are ACE inhibitors for all heart failure patients?
- What ACE inhibitors do for patients?

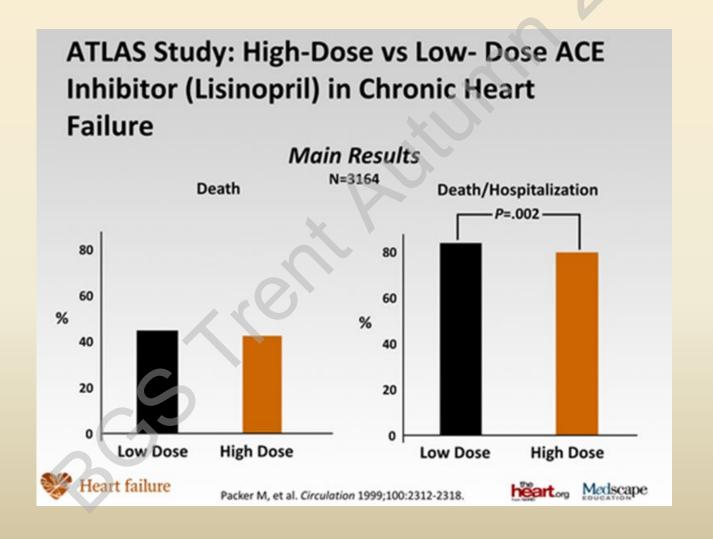
39.7% c.f. 35.5 in treatment Absolute reduction of 4.2%

Table 4. NYHA Classifications at End of Study.*

NYHA CLASS	TREATME	NT GROUP	
	PLACEBO	ENALAPRIL	
	(N = 126)	(N = 127)	
	no. of patients		
I	0	3	
II	2	13	
Ш	25	38	
IV	30	21	
(Patient died)	68	50	
Unknown	1	2	

^{*}For the difference between the groups, P<0.001. NYHA denotes New York Heart Association.

Table 1. Base-Line Clinical Characteristics and Drug Therapy of the Patients in the Two Study Groups.


CHARACTERISTIC	PLACEBO (N = 1284)	ENALAPRIL (N = 1285)
	m	ean
Age (yr)	61.0	60.7
Weight (kg)	79.6	79.9
Ejection fraction (%)	24.9	24.8
Blood pressure (mm Hg)		
Systolic	124.5	125.3
Diastolic	76.4	77.3
Heart rate (beats/min)	79.9	80.0
Serum sodium (mmol/liter)	139.7	139.7
Serum potassium (mmol/liter)	4.3	4.3
Serum creatinine (mg/dl)*	1.2	1.2
	percent	of group
Male sex	79.8	80.9
Race		
White	81.1	79.2
Black	14.5	16.2
Other	4.2	4.4
NYHA functional class†		
I II	10.5 56.6	11.4 56.8
iii	30.7	30.8
ïV	1.9	1.5
Disease history		1.0
Ischemic heart disease	72.1	70.2
Myocardial infarction	65.0	66.3
Hypertension	41.5	42.8
Diabetes mellitus	26.7	24.9

Does the trial study mirror our patients?

Patients were ineligible if they were over 80 years of age or had any of the following: hemodynamically serious valvular disease requiring surgery, unstable angina pectoris, angina thought to be severe enough to require revascularization procedures, myocardial infarction during the previous month, severe pulmonary disease, serum creatinine level higher than 177 µmol per liter (2 mg per deciliter), or any other disease that might substantially shorten survival or impede participation in a long-term trial.

What dose?

Is high dose better than low dose?

Same "guidelines" but different patients

48 yr old man
First presentation
of HF, severe
LVSD, NYHA 2

Priorities?
Treatment?

88yr old woman 10yr HF,MI 1994 Severe LVSD, NYHA 3, admissions x4

Priorities?
Treatment?

3 purposes for treatment

Prognosis

BB

ACE

MRA

Entresto

ICD

digoxin

Diuretics

Symptoms

Diuretics

Entresto

ACE

MRA

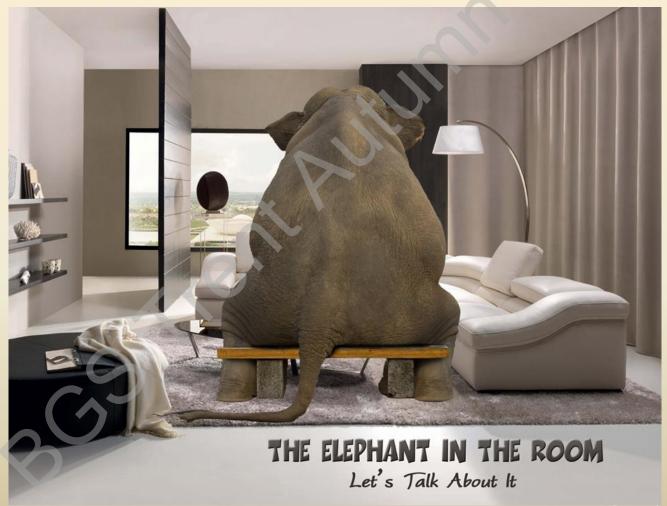
BB (Carvedilol?)

Digoxin

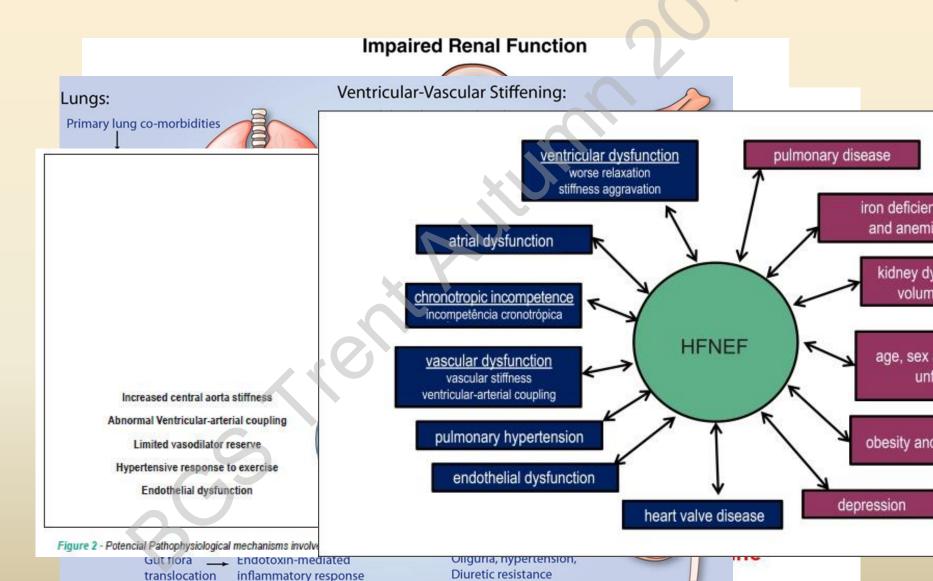
ICD

Cure

ACE


BB

Entresto


ICD

MRA

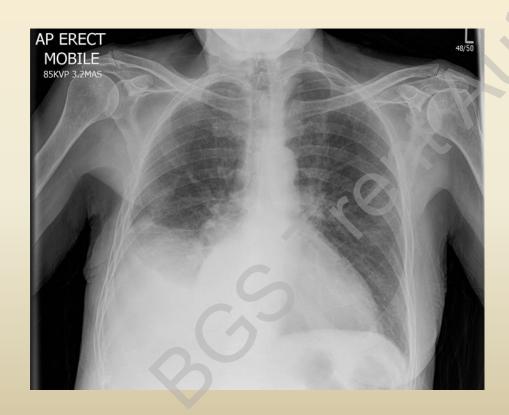
Heart Failure with Preserved Ejection Fraction (HFPEF)

HFPEF is often a result of several co-morbidities – lots of theories!!

Table 3. In-Hospital Care, Complications,	and Outcomes.					
Variable	Reduced Ejection Fraction (<40%) (N=1570)	Preserved Ejection Fraction (>50%) (N=880)	P Value			
	no. (%)					
In-hospital care						
Cardiologist as primary physician	527 (33.6)	217 (24.7)	< 0.001			

Cardiologist as primary physician Outcomes	527 (33.6) 2	17 (24.7) <0.001)
30-Day mortality	112 (7.1)	47 (5.	3) 0.08
1-Yr mortality	400 (25.5)	195 (22	2.2) 0.07
30-Day readmission for heart failure*	73 (4.9)	38 (4.	5) 0.66
1-Yr readmission for heart failure*	240 (16.1)	114 (13	3.5) 0.09
30-Day mortality or readmission for heart failure	182 (11.6)	83 (9.	4) 0.10
1-Yr mortality or readmission for heart failure	566 (36.0)	274 (31	0.01

^{*} Readmission rates were calculated for the 2339 patients who survived the index admission: 1493 with reduced ejection fraction and 846 with preserved ejection fraction.

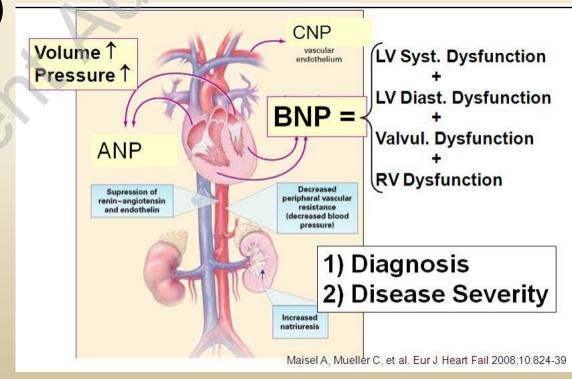

Tanure

1-Yr mortality or readmission for heart failure 566 (36.0) 274 (31.1) 0.01

^{*} Readmission rates were calculated for the 2339 patients who survived the index admission: 1493 with reduced ejection fraction and 846 with preserved ejection fraction.

Loke's Triad (for the diagnosis of HF-PEF)

 Symptoms – oedema responding to diuretics



Loke's Triad (for the diagnosis of HF-PEF)

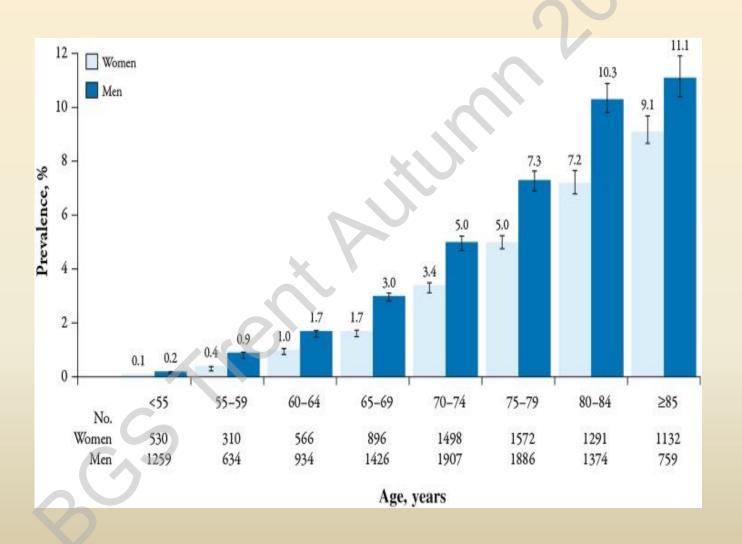
Symptoms – oedema responding to diuretics

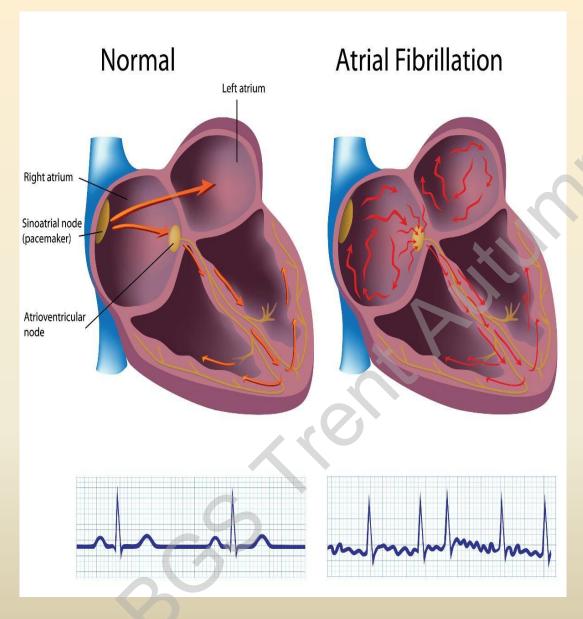
Abnormal BNP when patient overloaded

(usually 100-300)

Loke's Triad (for the diagnosis of HF-PEF)

- Symptoms oedema responding to diuretics
- Abnormal BNP when patient overloaded (usually 100-300)
- Echo showing good systolic function but other abnormalities, e.g. LVH, LA dilation, pulmonary hypertension

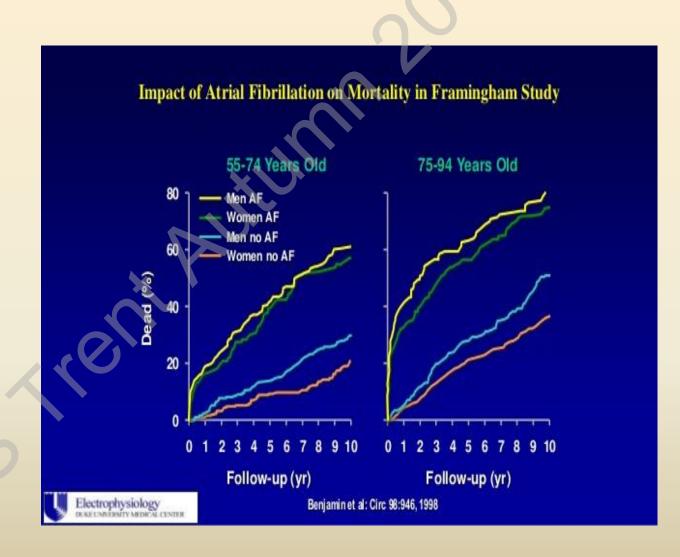



	Drug th		Conti			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 Beta-blocker							
Aronow	44	79	60	79	8.6%	0.73 [0.58, 0.93]	
J-DHF	18	120	25	125	1.6%	0.75 [0.43, 1.30]	
SENIORS	44	320	48	323	3.3%	0.93 [0.63, 1.35]	
Subtotal (95% CI)		519		527	13.5%	0.78 [0.65, 0.94]	•
Total events	106		133				
Heterogeneity: $Tau^2 = 0.0$	00; $Chi^2 =$	1.21, df	= 2 (P =	0.55);	$1^2 = 0\%$		
Test for overall effect: Z =	2.64 (P =	0.008)					
1.1.2 ACE-inhibitor							
ALL-HAT 2 (Lisinopril)	35	98	35	117	3.2%	1.19 [0.81, 1.75]	
HK-DHF 1 (Ramipril)	0	45	3	50	0.1%	0.16 [0.01, 2.98]	
PEP-CHF	56	424	53	426	3.9%	1.06 [0.75, 1.51]	
Zi	1	36	1	38	0.1%	1.06 [0.07, 16.25]	+ <u>-</u>
Subtotal (95% CI)		603		631	7.2%	1.10 [0.85, 1.43]	•
Total events	92		92		002 s 602		
Heterogeneity: Tau ² = 0.0			= 3 (P =	0.59);	$1^2 = 0\%$		
Test for overall effect: Z =	0.75 (P =	0.46)					
1.1.3 Angiotensin-recep	tor block	er					
CHARM-Preserved	244	1514	237	1509	16.9%	1.03 [0.87, 1.21]	+
HK-DHF 2 (Irbesartan)	1	56	3	50	0.1%	0.30 [0.03, 2.77]	
I-PRESERVE	445	2067	436	2061		1.02 [0.91, 1.14]	+
Subtotal (95% CI)		3637		3620	48.3%	1.02 [0.93, 1.12]	•
Total events	690		676		V. <u>1</u> 90000		
Heterogeneity: Tau ² = 0.0			= 2 (P =	0.56);	$1^2 = 0\%$		
Test for overall effect: Z =	0.37 (P =	0.71)					
1.1.4 Mineralocorticoid-	receptor a						
ALDO-DHF	1	213	0	209	0.0%	2.94 [0.12, 71.86]	
TOPCAT	252	1722	274	1723	18.2%	0.92 [0.79, 1.08]	
Subtotal (95% CI)		1935		1932	18.2%	0.92 [0.79, 1.08]	•
Total events	253		274				
Heterogeneity: $Tau^2 = 0.0$			= 1 (P =	0.48)	z = 0%		
Test for overall effect; Z =	1.00 (P =	0.32)					
	_						1

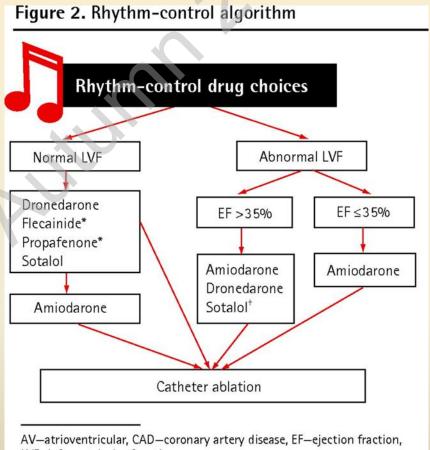
Take home messages

- Remember HFREF vs HFPEF
- HFREF ACE/BB/MRA
- Remember what we are trying to achieve for the different patients

Atrial Fibrillation



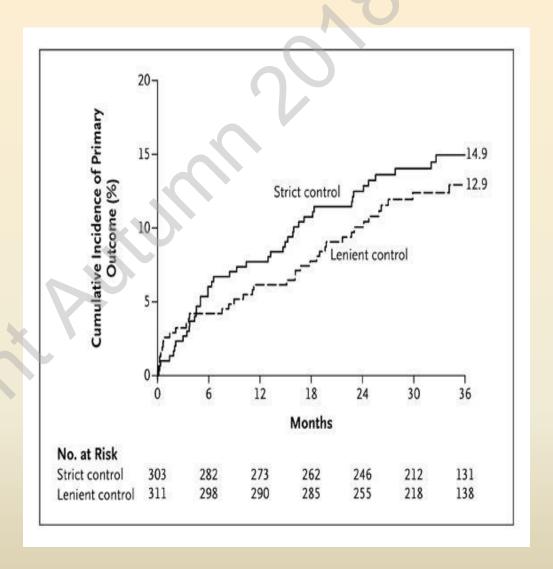
- 3 types
- 1. Paroxysmal terminates in 7 days
- 2. Persistent terminates with intervention after 7 days
- 3. Permanent does not cardiovert


The Problem with AF

- Tachycardia
- Bradycardia
- Stroke
- Sudden death

Strategies for managing AF

- Rhythm control
- Rate control
- Anticoagulation


LVF-left ventricular function.

^{*}Class I agents should be AVOIDED in CAD; they should be combined with AV-nodal blocking agents (eg, β-blocker, digoxin, diltiazem, or verapamil). ⁺Sotalol should be used with caution with EF 35% to 40%: contraindicated in women >65 v who are taking diuretics. Data from Jin and Kosar.4

What is the target heart rate?

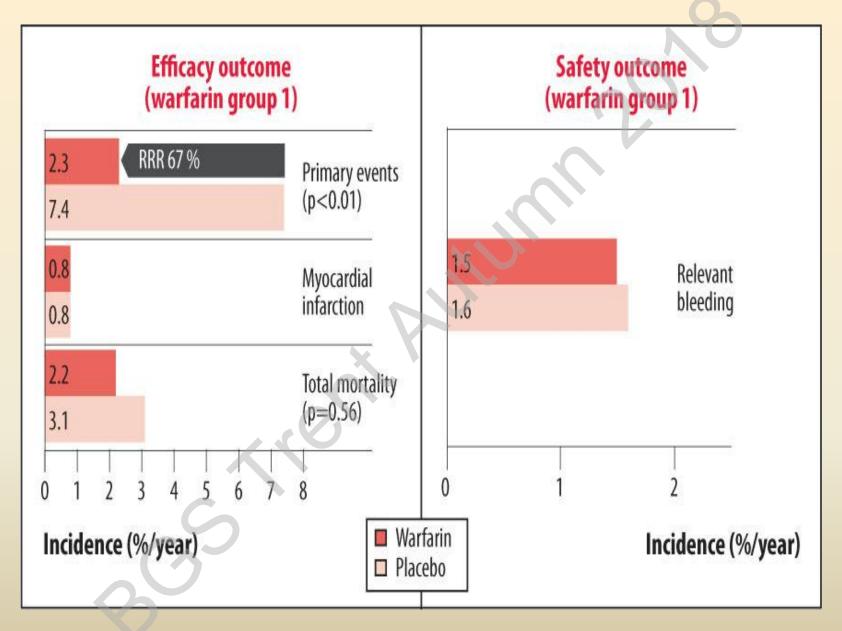
2614 patients with 12 months of AF assigned To lenient(<110) or strict HR control (<75) No real difference with different drugs

Primary outcomes: death, HF, hospitalization

Lenient versus Strict Rate Control in Patients with Atrial Fibrillation. Van Gelder et al. N Engl J Med 2010; 362:1363-1373

Evidence for warfarin is overwhelming

RR reduction in stroke, death


Stroke Prevention in AF

Warfarin vs. Placebo (6 trials, total n=2900)

Hart R, et al. Ann Intern Med. 2007;146:857-867.

Duke Clinical Research Institute

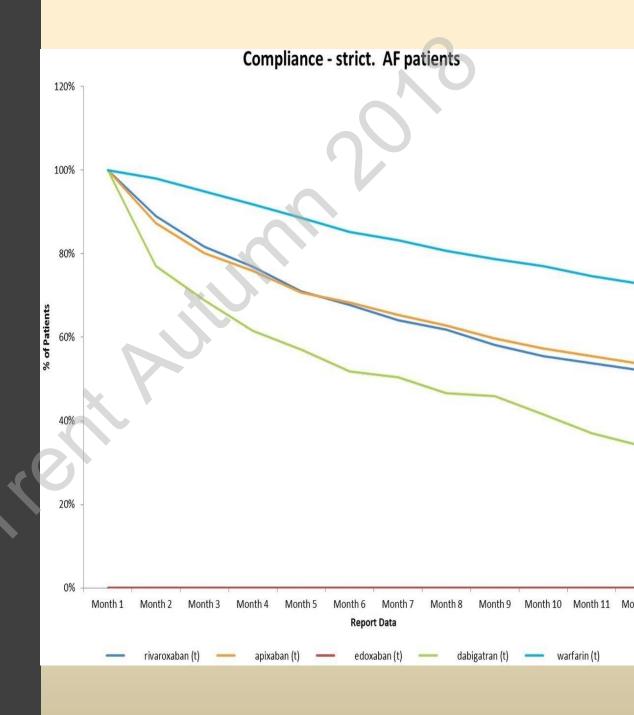
Decision making about anti-coagulation

CHADS VASC2 > HAS-BLED = NOAC/warfarin

CHA ₂ DS ₂ -VAS _C	Score	HAS-BLED	Score
Congestive heart failure/LV dysfunction	1	Hypertension i.e. uncontrolled BP	1
<u>H</u> ypertension	1	Abnormal renal/liver function	1 or 2
<u>Ag</u> ed ≥75 years	2	Stroke	1
<u>D</u> iabetes mellitus	~1 \	Bleeding tendency or predisposition	1
Stroke/TIA/TE	2	Labile INR	1
$\overline{\underline{V}}$ ascular disease [prior MI, PAD, or aortic plaque]	1	Age (e.g. >65)	1
<u>Aged 65-74 years</u>	1	Drugs (e.g. concomitant aspirin or NSAIDSs) or alcohol	1
Sex category [i.e. female gender]	1		
Maximum score	9		9

How good is CHADS VASC at predicting stroke?

CHA2DS2-VASc Score	Stroke rate (%)
0	0
1	1.3
2	2.2
3	3.2
4	4.0
5	6.7
6	9.8
7	9.6
8	6.7
9	15.2


- Lower levels needed
- More interactions
- Higher risk of falls
- Higher riskICH

Is anticoagulation safe in the elderly?

SPAF, BAFTA, ALL REASSURRING BUT.....

How about DOACs?

- Generally safer according to trials
- Some concerns in older patients – adherence, renal function
- ?advantages of warfarin
- Mean age in DOAC trials was 70

Take home messages

- Exclusion criteria's too sick for anticoagulation?
- Look at actual risk (NNT)
- Review and stop if indicated
- DOAC not necessarily better and safer
- Inform appropriately

Questions? Disagreements?

