Collaboration for Leadership in Applied Health Research and Care

Exercise during periods of decompensation

Stephen Lim

Clinical Research Fellow & SpR in Geriatric Medicine

s.e.lim@soton.ac.uk

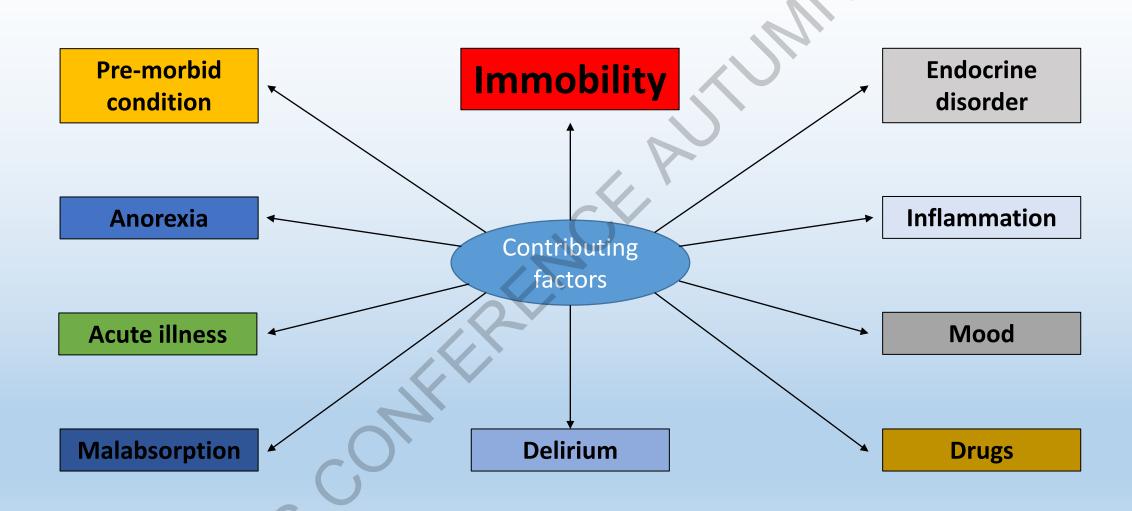
@StephenERLim

Conflict of interest

No conflict of interest to declare

Outline

- Sarcopenia during acute illness
- Evidence regarding exercise among older people in hospital
- Southampton Mobility Volunteer study (SoMoVe)



Sarcopenia during acute illness

- Rapid loss of muscle mass and strength primarily a result of
 - excessive protein break down, and
 - reduced protein synthesis
- Hospitalisation: Physical inactivity & anorexia
- Progression of sarcopenia may be accelerated by physical inactivity and poor nutrition

Contributing factors to accelerated loss of muscle mass and strength

Median time in upright position 43min per day (mean age 74 years)
 (Brown 2009)

- Median daily step count 590 steps (Age > 75 years) (Fisher 2011)
- Median daily step count ranged from (229 661) (McCullagh 2016)

- Kortebein (2007) 10 days bed rest 1.5kg of whole body lean mass,
 1kg loss of lean leg mass among healthy older adults
- Inactivity-related loss of muscle mass predominantly affects the lower body musculature,
- most rapid during the initial days/weeks of inactivity
- Predominantly in the ambulatory and postural muscles of lower extremities (LeBlanc 1992, Paddon-Jones, 2004)

Exercise during periods of decompensation

• What is the current evidence for older medical inpatients?

Exercise for acutely hospitalised older medical patients

(de Morton et al, 2007)

• 7 RCTs and 2 CCTs

- 3 trials were exercise only interventions
 - Walking and exercise programme
 - Individually tailored by physiotherapists
 - Administered by physiotherapy assistant
 - Twice per day, up to 30min per session
 - Commenced within 2-3 days of hospital admission

Exercise for acutely hospitalised older medical patients (de Morton et al, 2007)

- 6 trials MDT interventions that included exercise
 - Increased medical and/or nursing care
 - Additional exercise administered or supervised by:
 - Nursing staff or therapists
 - Care givers
 - Within 3 days of admission
 - Frequency, duration, repetition less well-described
 - Intervention for 2 trials: walk or stand 3 times per day and a daily walk to the activity room for exercises

Sc

Findings

MDI + exercise	Pooled analysis
Length of stay	WMD: -1.08 (95% CI -1.93, -0.22)
Discharge home	RR: 1.08 (95% CI 1.03, 1.14)
Activities of Daily Living	RR: 1.07 (95% CI 1.00, 1.13)
Exercise only	
Length of stay	WMD: 0.01 (95% CI -1.23 – 1.26)
Barthel Index	SMD: 0.17 (95% CI -0.06 – 0.10)

Impact of exercise/mobility programme on older medical inpatients

- Reduction in nursing home admission (Nolan 2008)
- Reduction in length of stay (Padula 2009)
- Improvement in ADL and IADL (Courtney 2009)
- Higher proportion of patients who had ≥ 10 point Barthel Index improvement (Abinzanda 2011)
- Improvement in Timed up and go test (Laver 2012)
- Maintenance of pre-hospitalisation community mobility (Brown 2016)

Key points:

- Any exercise is better than no exercise
- As early as possible!
- Lower limb exercises, mobility
- 2-3 times a day
- 25 45min per session
- Target intervention on patients who require supervision or assistance to ambulate

Southampton Mobility Volunteer study (SoMoVe)

- Addressing the issue of sedentary behaviour
- The role of volunteers in healthcare
 - 3 million volunteers involved in health and social care
 - 1.9 million volunteers involved in volunteering among older people
- Volunteers being involved in direct patient care
 - Eg: Mealtime assistance
- Aim: To explore the feasibility and acceptability of using trained volunteers to encourage older inpatients to be physically active

Volunteer recruitment and training

- Hospital voluntary services
- Study promoted during volunteer induction day
- Interested volunteers invited to the training day
- Existing volunteers were also encouraged to participate

- Theory
- Practice among peers
- Competency assessment (4 hours on average)

3 acute medical wards in the Medicine for Older People department

Inclusion criteria

- Patients aged ≥ 70 years
- Able to mobilise prior to admission
- Able to provide valid consent

Exclusion criteria

- Patients receiving palliative care
- Infection-control

Intervention

- Twice daily volunteer-led intervention
- 15 20 minutes
- Weekdays
- Individualised activity prescription by therapists
- Participants who were discharged by therapy and independently mobile were encouraged to mobilise
- Participants who needed assistance in mobility were encouraged to perform bedside upper limb and lower limb exercises

Pre – post observational study

Outcomes

- Volunteer recruitment, training and retention
- Patient adherence to intervention
- Adverse events
- Acceptability
- Physical activity levels
- Receipt of care
- Cost analysis

Volunteer recruitment

August 2016 – April 2017

• Recruited: 17 volunteers


• Trained: 16 volunteers

• Retained: 12 volunteers (71%)

Volunteer characteristics		N =16
Age (mean)		36.1 (SD 20.6)
Age range (years)		17 – 66
Gender	Male	4 (25%)
	Female	12 (75%)
Employment	Full time	1 (6%)
	Part time	3 (19%)
.<	Retired	3 (19%)
	Student	8 (50%)
Previous volunteering ex	perience	12 (75%)
Experience in healthcare	2	9 (56%)

		Pre-intervention (n = 50)	Intervention (n = 50)
Age (mean)		87.2 (4.6)	86.2 (5.1)
Barthel Index (Media	n)	77 (54-90)	80 (58-92)
Gait speed (m/s; med	dian)	0.55 (0.35-0.72)	0.45 (0.26-0.71)
Mini-mental state exa	amination (Median)	25.5 (22-27)	26 (22-28)
Usual Residence	Living alone	26 (52%)	21 (42%)
	Living with friends/family	21 (42%)	27 (54%)
	Residential/Rest home	3 (6%)	1 (2%)
	Nursing home	0	1 (2%)

Participant adherence to activity: 230/310 (74%)

No adverse events reported

Reason for non-adherence	Number (%)
Clinical reasons	16 (20%)
Tiredness	15 (19%)
No reason given	15 (19%)
Feeling unwell	14 (18%)
Patient wanted to rest	6 (8%)
Patient asleep	5 (6%)
Visitors	5 (6%)
Pain	3 (4%)
Going home	1 (1%)

Results

	Pre- Intervention (n = 50)	Intervention (n = 50)	P value	Difference
Median daily step count	636 (298 – 1468)	912 (295 – 1824)	0.27	+45%
Length of hospital stay	15.5	15	0.83	-0.5 days
Readmission in 1 month	30%	18%	0.16	-12%
Discharge to usual residence	70%	68%	0.82	-2%

Would I have done it if he had not come in? I might not have done. It's having the volunteers, they encourage you to have a go.

I think the more chances patients are given to activity, they will all get well quicker. No doubt about it. I feel good now, and I want to get home. I think mobility is a very important thing for everybody.

Patient X

Acceptability

We should have time, but we don't and that's the role the volunteers play, a very vital support role to us I think. It frees up time for us to do more critical care.

Nurse X

Southampton Southampton

Acceptability

We've got a patient on ward X at the minute who said 'I love doing these exercises because I feel much more flexible since the volunteers started coming'. He rants about it all the time and he obviously likes it!

Therapist Y

Acceptability

I think patient contact and the interaction with the staff that work on the wards are the things I enjoy most in my role.

Volunteer X

Cost analysis

- Cost of training 16 volunteers: £4,775
- 3 hours group training session (5 training sessions) + 4 hours of individual assessment
- Cost to train a volunteer: £298.44

- Feasible and safe to train volunteers to encourage older inpatients to remain active.
- Acceptable and well-received by patients, nurses and therapists
- Indications of improved physical activity, reduction in length of hospital stay and readmission rate.

Collaboration for Leadership in Applied Health Research and Care

Acknowledgement

- NIHR Academic Clinical Fellowship
- NIHR CLAHRC Wessex
- University Hospital Southampton NHS FT
- UHS Volunteer Services
- Prof Helen Roberts
- Prof Avan Aihie Sayer
- Dr Richard Dodds
- Dr Kinda Ibrahim
- David Bacon
- Hannah Wood
- Helen Packard
- Volunteers
- Participants

SGS CONFERENCE AUTUMN 2011

	Intervention	mean age (years)	Outcome measure	Findings
Nolan 2008 ; N = 196	Functional maintenance exercise, 6 x per week, 30 min	83.6	Elderly Mobility Scale, Receipt of care	Reduction in nursing home admission. Trend towards reduction in LOS and improved functional mobility, but not statistically significant
Courtney 2009; n = 64	Individual exercise programme, daily in hospital, + telephone follow up for 24 weeks post-discharge	78.1	ADL	Improvement in both ADL and IADL scores
Padula 2009; n =51	Nurse-driven mobility protocol		Receipt of care	Reduction in length of stay
Abinzanda 2011; n = 198	Occupational therapy, retraining in ADL, 5 days/week, 30-45min/day	83.7	Barthel Index	55.6% improved ≥ 10 BI points (36.7% in control group)
Laver 2012; n = 22	Wii Fit supervised by physio, 5 days/week, 25min/day	85.2	TUG	Improvement in TUG
Brown 2016; n = 100	Mobility programme + behavioural intervention	74.4	ADL, LSA	Maintenance of pre-hospitalisation community mobility